Untersuchungen in den Systemen: Mangan-{Vanadin, Rhenium, Eisen}-Silicium

Von

S. Setz, H. Nowotny und F. Benesovsky

Aus dem Institut für physikalische Chemie der Universität Wien und der Metallwerk Plansee A. G., Reutte/Tirol

Mit 2 Abbildungen

(Eingegangen am 27. Mai 1968)

Die strukturchemischen Verhältnisse werden in den Dreistoffen: Mn—{V, Re, Fe}—Si für einen Zustand — 1000° C homogenisiert und abgeschreckt — untersucht. Die neu aufgefundene Mn—Re- χ -Phase ist hinsichtlich der Ordnung mit der Re-Nb- χ -Phase vergleichbar. Mn₅Si₂ wird durch Mn/Re-Austausch bei 1000° C stabilisiert. Einer ternären Kristallart (X) mit erheblichem Homogenitätsgebiet kommt die ungefähre Formel Mn₂₋₃Re₂₋₁Si zu. Der Austausch Mn/Re in Mn₅Si₃ erfolgt nur in der 6g-Lage. MnSi und ReSi sind lückenlos mischbar.

Gitterparameter für die Mn-Re-Si- und V-Mn-Si- σ -Phasen werden bestimmt. V₃Si löst etwa 50 Mol% Mn₃Si. Die lückenlose Mischreihe Mn₃Si-Fe₃Si wird bestätigt; gegenüber Literaturbefunden besteht jedoch im ganzen Bereich ein Ordnungszustand (BiF₃-Typ).

The ternary systems: $Mn - \{V, Re, Fe\}$ -Si have been studied after anneal at 1000° C followed by a quench by means of X-ray methods. The newly found Mn-Re- χ -phase compares with the Re-Nb- χ -phase as far as the ordering is concerned. Mn_5Si_2 can be stabilized by Re/Mn-substitution up to higher temperatures. A ternary phase X having a large homogeneous region, can roughly be described by a formula $Mn_{2-3}Re_{2-1}Si$. Re substitutes Mn within the Mn_5Si_3 -phase occupying the 6g positions only. Lattice parameters of the Mn-Re-Si- and V-Mn-Si- σ -phases have been determined. V₃Si dissolves about 50 mole% Mn₃Si. The solid solutions Mn_3Si -Fe₃Si can be confirmed; however there is an ordering throughout the whole domain (BiF₃-structure type). S. Setz u. a.: Mangan-{Vanadin, Rhenium, Eisen}-Silicium 2005

Eine Anzahl von Silicidsystemen mit zwei Übergangsmetallen ist bereits erforscht¹, allerdings sind insbesondere Kombinationen, an welchen Mangansilicide beteiligt sind, weniger bekannt. Dies hängt vermutlich damit zusammen, daß bei diesem System etwas komplexere strukturchemische Verhältnisse bestehen, wie die Existenz der Defektdisilicide beweist². Außerdem ist auch die manganreiche Seite des binären Mn—Si-Systems durch das Auftreten von Polyederphasen verwickelter als dies bei Siliciden der IVa- bis VIa- bzw. VIIIa-Metalle der Fall ist.

Aus diesem Grunde wurde das Verhalten von Mn—Si gegenüber einem weiteren Übergangsmetall, nämlich Vanadin, Rhenium und Eisen geprüft. Diese Dreistoffe sind überdies im Hinblick auf Halbleitereigenschaften von Interesse.

Herstellung der Proben

Soweit nicht gesondert angegeben, wurden die meisten Proben aus den pulverförmigen Komponenten* durch Sintern bei 1200° C (2—4 Stdn.) im Wolframrohrofen unter gegettertem Argon hergestellt. Ein Teil der Proben, insbesondere die Rhenium-haltigen, wurden im Lichtbogenofen niedergeschmolzen. Sämtliche Legierungen wurden anschließend bei 1000° C geglüht (20 Stdn., bzw. 60 Stdn. für die Rhenium-haltigen Proben). Ferner wurden einzelne Proben einer Glühung bei 800° C (80 Stdn.) unterworfen.

Der Zweistoff: Mn-Si

Im Temperaturschnitt von 1000°C (abgeschreckt) wird auf der Mangan-Seite β -Mn gefunden, das nach *Bardos, Malik, Spiegel* und *Beck* 14 At% Si löst³. Nach diesen Autoren folgt bei etwa 18 At% Si die ν -Phase (gelegentlich auch als N-Phase bezeichnet)^{4, 5}. Außerdem wird eine R-Phase (Mn₆Si) bei Temperaturen von 800°C und darunter beobachtet⁴. Die Phasen Mn₃Si, Mn₅Si₃ und MnSi sind seit langem bekannt^{6, 7}.

^{*} Vanadin, Ges. f. Elektrometallurgie m. b. H., Nürnberg, V ~ 99,5%; Fe: 0,15%; Si: 0,17%; C: 0,08%; O: 0,1%; Elektrolytmangan, Ges. f. Elektrometallurgie m. b. H., Nürnberg, Mn ~ 99,4%; Fe: 0,04%; Si: 0,02%; C: 0,01%; O: 0,3%; S: 0,02%; Rhenium, H. C. Starck, Goslar, Re ~ 99,8%; Mo: 0,003%; Fe: 0,003%; Si: 0,001%; O: 0,15%; Carbonyleisen, BASF, Ludwigshafen, Fe ~ 99,8%; C: 0,01%; O: 0,18%; Silicium, Péchiney, Usine de St. Jean de Maurienne, Si ~ 99,9%; Fe: 0,01%; O: 0,08%.

¹ E. I. Gladyschevskii, Poroschk. Metallurgia 10, 46 (1962).

² O. Schwomma, H. Nowotny und A. Wittmann, Mh. Chem. 94, 681, 924 (1963).

³ D. I. Bardos, R. K. Malik, F. X. Spiegel und P. A. Beck, Trans. Met. Soc. AIME 236, 40 (1966).

⁴ Siehe Yu. B. Kuzma und E. I. Gladyschevskii, J. Neorg. Khim. 9, 674 (1964).

⁵ K. Amark, B. Borén und A. Westgren, Metallwirtsch. 15, 835 (1936).

⁶ B. Borén, Arkiv Kemi Min. Geol. 11A, No. 10 (1933).

⁷ B. Aronsson, Acta Chem. Scand. 12, 308 (1958); 14, 1414 (1960).

Neueren Datums ist der Nachweis der Existenz der Tieftemperaturphase Mn₅Si₂⁸. Schließlich sei auf die kürzlich beschriebenen Mn-Defektdisilicide Mn₁₁Si₁₉, Mn₂₆Si₄₅, Mn₁₅Si₂₆, Mn₂₇Si₄₇ verwiesen⁹.

Abb. 1. Dreistoff Re-Mn-Si. Schnitt bei 1000° C (in At%)

Die Zweistoffe: Re-Si und Mn-Re

Das erstgenannte System wurde von $Knapton^{10}$ aufgeklärt; danach sollen die Kristallarten Re₅Si₃ mit W₅Si₃-Typ, ReSi (FeSi-Typ) und ReSi₂ (MoSi₂-Typ) bestehen. Nach *Kopeckii*, *Shektman*, *Ageev* und *Savitzkii*¹¹ ist das System: Mn—Re durch das Auftreten einer intermediären Phase (σ -Phase) gekennzeichnet¹².

- ⁹ G. Flicher, H. Völlenkle und H. Nowotny, Mh. Chem. 98, 2173 (1967).
 ¹⁰ A. G. Knapton, Plansee Proc. 1958, 412.
- ¹¹ Č. V. Kopeckii, V. S. Shektman, N. V. Ageev und E. M. Savitzkii, Dokl. Akad. Nauk SSSR **125**, 87 (1959).
- ¹² E. M. Savitzkii, M. A. Tylkina, R. V. Kirilenko und Č. V. Kopeckii, J. Neorg. Khim. SSSR 6, 1474 (1961).

⁸ J. P. Sénateur und R. Fruchart, C. R. hebdomad. Sé. Acad. Sci. Paris 258, 1524 (1964).

Der Dreistoff: Mn-Re-Si

Die Phasenfeld-Aufteilung für 1000° C (abgeschreckt) auf Grund von über 100 Proben geht aus Abb. 1 hervor.

Die β ---Mn-Phase: Die Ausdehnung derselben bis 14 At% Si bei etwa 1000° C wird bestätigt (a = 6,280 Å für 14 At% Si gegenüber 6,277 Å⁵). Rhenium stabilisiert die β -Mn-Phase bis etwa 3 At% unter Parameter-Vergrößerung (6,327 Å). Es sei aber bemerkt, daß die Bildung der β -Mn-Phase durch geringe Mengen an Nichtmetall, vor allem Sauerstoff, begünstigt wird. Eine Probe mit 5 At% Si, 5 At% Re und 90 At% Mn (bei 1200° C geglüht) enthält die Phasen α -Mn und β -Mn (a = 6,32 Å).

Die α -Mn-Phase: Diese weist in dem untersuchten Temperaturbereich kein großes homogenes Gebiet auf; es besteht nur geringe Tendenz, Silicium zu lösen. Für etwa 5 At% Re stimmt der Gitterparameter (a = 8,938 Å) ziemlich gut mit dem Literaturwert (8,942 Å für 5,6 At% Re) überein.

Die χ -Phase: Wie bereits mitgeteilt¹³, bildet sich beim Sintern (1000° C) von Mn—Re-Ansätzen mit 10 At% Re und mehr eine χ -Phase aus. Hinsichtlich der Gitterparameter sei ebenfalls auf die vorangegangene Arbeit verwiesen¹³. Die Intensitätsberechnung für eine Zusammensetzung von 41 At% Re und 59 At% Mn (Tab. 1) führt auf folgende Ordnungsstruktur:

> 2 Re in 2a 8 Re in 8c (10 Mn + 14 Re) in 24g 24 Mn in 24g.

Als Parameter wurden jene von α -Mn verwendet. Die Ordnung ist ähnlich jener wie sie bei der Nb—Re- χ -Phase von Steadman und Nuttall¹⁴ gefunden wurde, allerdings in der Weise, daß Niob die Plätze des Rheniums und Rhenium diejenigen von Mangan in der Mn—Re- χ -Phase einnimmt. Im Gegensatz zu dem ausgedehnten Bereich der χ -Phase im binären System Mn—Re scheint keinerlei Löslichkeit für Silicium zu bestehen; ganz im Gegenteil erleichtert der Si-Gehalt die Bildung der σ -Phase (s. w. u.). Auffallend ist, wie schon berichtet, die Vergesellschaftung der Mn—Re- χ -Phase mit der χ -Mn-Mischphase. Ein merklicher Einfluß von Sauerstoff auf die Entstehung der χ -Phase scheint nicht vorzuliegen, zumal diese Kristallart auch zusammen mit der Mn—Re- σ -Phase beobachtet wird. Rhenium und Technetium sind übrigens die häufigsten Partner von χ -Phasen, was offensichtlich die Neigung aller Elemente der VIIa-Gruppe charakterisiert, die α -Mangan-Struktur anzustreben.

¹³ S. Setz, H. Nowotny und F. Benesovsky, Mh. Chem. 99, 730 (1968).

¹⁴ R. Steadman und P. M. Nuttall, Acta Cryst. 17, 62 (1964).

(hkl)	Int. _{ber.}	Int.gesch.*	(hkl)	Int. _{ber.}	Int.gesch.*
(110)	2	•	(600) (442)	173	s+
(200)	11		(611) (532)	110	s^{-}
(211)	300	s	(620)	0	
(220)	22		(541)	64	ss
(310)	7	—	(622)	47	ss-
(222)	18		(631)	65	SS
(321)	22		(444)	155	s^+
(400)	57	SS	(710) (550) (543)	178	s^+
(411) (330)	1770	\mathbf{sst}	(640)	0	
(420)	0		(721) (633) (552)	1410	sst
(332)	150	S	(642)	72	SS
(422)	160	S	(730)	158	\mathbf{s}^+
(510) (431)	57	SS	(732) (651)	464	\mathbf{mst}
(521)	5				
(440)	0				
(530) (433)	22				

Tabelle 1. Intensitätsberechnung für die Mn-Re-x-Phase

*Geschätzte Intensitäten für Pulveraufnahmen von Mn—Re-Legierungen mit 30 At%bzw. 45 At% Re, wobei das Diagramm der Re-reicheren Probe stärker berücksichtigt ist.

Die σ -Phase: Proben im binären System Mn—Re lassen zwischen 23 und 48 At% Re nach Lichtbogen-Schmelzen und darauffolgendem Anlassen bei 1000° C auf einen nur mäßigen Gleichgewichtszustand schließen. Die Gitterparameter der hier beobachteten σ -Phase sind deshalb nicht sehr genau. Für eine Probe mit 45 At% Re findet man: $a = 9,20_1$ Å, $c = 4,80_2$ Å; c/a = 0,52. Diese Werte sind nur wenig größer als jene für 40 At% Re nach Kopeckii et al.¹¹. Für eine Probe gemäß 25 At% Re ergibt sich: a = 9,16 Å, c = 4,72 Å; c/a = 0,515. Der c-Wert steht nicht mit dem von Savitzkii et al.¹² angegebenen in Einklang.

Im Dreistoff besitzt die σ -Phase eine erhebliche Ausdehnung; der Bereich weitet sich stark nach der Mn—Si-Seite aus, ähnlich wie dies auch im System Mn—Cr—Si der Fall ist³. Analog ist auch das Verhalten bezüglich der geringen Ordnungstendenz in beiden σ -Phasen. Die σ -Phasen werden häufig vom Gesichtspunkt einer konstanten Valenzelektronen-Konzentration (*VEC*) diskutiert, wobei e/a-Werte von 5,6 bis 7,7 charakteristisch sein sollten; das günstigste Verhältnis liegt bei 6,6¹⁵. Einige typische Gitterparameter im homogenen σ -Gebiet sind aus Tab. 2 zu entnehmen.

Die Re-Mischphase: Diese überdeckt ebenfalls ein weites homogenes Gebiet bis etwa 11 At% Si und etwa 48 At% Mn. Nach beiden Seiten nehmen die Parameter ab (Tab. 3).

¹⁵ W. Hume-Rothery, "The Structures of Alloys of Iron", Pergamon, Oxford 1966.

Zusamr	nensetzung	in At%		a (Å)	alm
Re	Si	Mn	<i>a</i> (A)	C (A)	
30		70	9,170	4,728	0,515
25	5	70	9,085	4,720	0,519
20	10	70	8,984	4,687	0,521
10	20	70	8,886	4,666	0,525
35	10	55	9,062	4,732	0,522
25	10	65	9,005	4,700	0,522
10	10	80	8,917	4.657	0.522

Tabelle 2. Gitterparameter der Mn-Re-Si-σ-Phase

Tabelle 3. Gitterparameter der Re-Mischphase

Zusamn	nensetzung	in At%	18		,
Re	Si	Mn	<i>a</i> (A)	c (A)	c/a
90	10		$2,760_{5}$	4,448	1,611
85	5	10	2,759	4,449	1,612
75	5	20	2,757	4,445	1,612
53		47	2,753	4,447	1,615

Die Sequenz: β -Mn-Typ $\rightarrow \alpha$ -Mn (χ) $\rightarrow \sigma \rightarrow$ hex. dichte Packung entspricht teilweise einer von *Hume-Rothery* aufgestellten Regelmäßigkeit¹⁵. Wie meistens, hat man dem leichten Element (Mn) eine etwas niedrigere Zahl an Valenzelektronen zuzuordnen als dem schweren (Re) derselben Gruppe.

Die binären Phasen R, N (v) und Mn₃Si konnten bestätigt werden. Die R-Phase wird jedoch von anderen Autoren erst unterhalb 1000° C beobachtet. Es ist möglich, daß die Abschreckgeschwindigkeit hier ungenügend war. Die geringe Stabilität erkennt man aus der Tatsache, daß die R-Phase im Dreistoff stark abgeschnürt ist. In der Nähe der Mn₃Si-Mischphase wurde eine ternäre Kristallart mit einer ungefähren Zusammensetzung von Mn_{4.96}Re_{0.44}Si_{2.00} gefunden, was einen Zusammenhang mit der Tieftemperaturphase Mn₅Si₂ nahelegt. Wie eine Auswertung der Pulveraufnahme einer derartigen Legierung zeigt, handelt es sich um ein Restabilisiertes Mn₅Si₂. Die Gitterparameter: a = 8,931 Å; c = 8,696 Å (c/a = 0.974) führen auf ein etwas größeres Volumen als jenes von Mn₅Si₂. Die Re-stabilisierte Phase Mn₅Si₂ entspricht offensichtlich der Mischphase (Mn, Fe)₅Si₂. Nach Sénateur und Fruchart⁸ besitzt diese Phase mit 34% Fe die Parameter: a = 8,866 Å, c = 8,655 Å und c/a = 0,976. Dieselbe Kristallart scheint auch mit der von Shoemaker und Shoemaker¹⁶ gefundenen Phase der Formel V_{26.5}Fe₄₄Si_{29.5}, isotyp zu sein. Es ist möglich, daß

¹⁶ Clara B. Shoemaker und D. P. Shoemaker, Amer. Cryst. Assn. Summer Meeting, Gatling Progr. and Abstr. 72 (1965).

die Zusammensetzung etwas von dem Verhältnis Metall:Silicium = 5:2 abweicht.

Die X-Phase: Der Dreistoff ist im Si-armen Teil von einer ternären Phase X mit einem ausgedehnten homogenen Bereich beherrscht. Dieser erstreckt sich vorzugsweise bei 20 At% Si, von 20 bis 40 At% Re. Röntgenogramme dieser Kristallart lassen sich versuchsweise mit einer tetragonalen (pseudokubischen) Zelle indizieren. Näherungsweise kann die X-Phase als $Mn_{2-3}Re_{2-1}Si$ formuliert werden; allerdings steht die Ausdehnung dieser Phase in Richtung auf variablen Si-Gehalt außer Zweifel.

Der Schnitt: Mn_5Si_3 —, Re_5Si_3 ". Rhenium substituiert Mangan im Mn_5Si_3 -Typ in ziemlichem Ausmaße. Interessant ist dabei die Art des Re-Einbaues in das Mn_5Si_3 -Gitter, indem lediglich die Manganatome in der 6g-Position ausgetauscht werden. Dies wird durch die Intensitätsberechnung der Pulveraufnahme einer Probe im Bereich von etwa 20 At% Re, 43 At% Mn und 37 At% Si bewiesen (Tab. 4). Danach erfolgt hier der Austausch in anderer Weise als bei (Ti, W)₅Si₃, bei welcher Phase die W-Atome in der Punktlage 4d) substituieren¹⁷. Die Gitterparameter für maximalen Mn/Re-Austausch in der Mn₅Si₃-Struktur sind: a = 6,937 Å, c = 4,803 Å und $c/a = 0,69_2$.

Die Existenz einer Phase in der Nähe von 37 At% Si und 63 At% Re im Zweistoff: Re—Si konnte bestätigt werden; auch wurde gefunden, daß die Pulveraufnahme dieser Kristallart dem W₅Si₃-Typ sehr ähnlich sieht. Eine Indizierung nach diesem Typus gelang jedoch nicht. Es sei erwähnt, daß die von *Knapton* angenommene Isotypie mit W₅Si₃ (auch T1 genannt) auf einer versuchsweisen Indizierung beruht. Im übrigen ist noch zu bemerken, daß dieses Re-Silicid bisher nur in einem mäßig kristallisierten Zustand gefaßt werden konnte. Legierungen gemäß einem Ansatz mit 37,5 At% Si enthalten neben dieser "Re₅Si₃"-Phase noch ReSi. Andrerseits findet man bei Ansätzen mit 25 At% Si neben der besagten Phase kaum freies Rhenium. Demnach scheint dieses Silicid, wie schon früher von *Searcy* und *McNees*¹⁸ vermutet, Re-reicher zu sein.

Der Schnitt: MnSi-ReSi. Obgleich nicht sämtliche Proben auf diesem Schnitt völlig im Gleichgewicht waren, ist der homogene Übergang der beiden isotypen Phasen aus der Auswertung der Pulveraufnahmen klar erkennbar (Tab. 5). Ob die schwache Dilatation gegenüber einem linearen Verlauf des Parameters charakteristisch ist oder mit den erwähnten Ungleichgewichten in Zusammenhang steht, kann nicht entschieden werden.

Der Schnitt im Bereich von 64 bis 67 At% Si: Die Parameter von ReSi₂ ändern sich durch Re/Mn-Austausch bis auf: a = 3,133 Å, c =

¹⁷ H. Schachner, E. Cerwenka und H. Nowotny, Mh. Chem. 85, 245 (1954).

¹⁸ R. A. McNees und A. W. Searcy, J. Amer. Chem. Soc. 77, 5920 (1955).

(hkl)	$10^3 \cdot \sin^2 \theta_{gem.}$	$10^3 \cdot \sin^2 \theta_{ber.}$	$I_{\rm gesch.}$	I _{ber} .
(100)	35,8	36,3	SS	41
(110)	r	109,1		1
(200)	145,2	145,4	SSS	30
(111)	166,7	165,9	s	77
(002)	229,1	227,5	SS	35
(210)	254,6	254,5	s	64
(102)	265,3	263,8	s	48
(211)	312,7	311,4	\mathbf{st}	200
(300)	329,0	327,2	SSS	24
(112)	337,2	336,6	s	61
(202)		372,9		0
(220)		436,2		0
(310)	Laborer	472,6		0
(212)	482,6	482,0	SSS	11
(221)	493,0	493,1	SSS	9
(311)		529,5		0
(302)		554,7		0
(400)	581,7	581,7	s	21
(113)	620,9	620,9	SS	14
(222)	662,8	663,8	s	30
(320)	690, 5	690,7	SSS	6
(312)	700,2	700,1	SS	13
(321)	747,0	747, 6	s +	49
(410)	768 A	763,4)	- 4	1 4 17
(213)	700,4	766,4	st	147
$(402)^{-1}$	809,2	809,2	\mathbf{mst}	97
(411)		820,3		1
(500)	000.6	908,8)		0.0
(004)	909,0	910,0	mst	82
$(322)^{-1}$	·····	$918,2^{-1}$		0
$(104) \\ (223) ($	947,1	946,4 948,1	SS	16

Tabelle 4. Auswertung der Pulveraufnahme einer Re-Mn-Si-Legierung (20 At% Re, 43 At% Mn, 37 At% Si), Cr-K\alpha-Strahlung

Tabelle 5. Gitterparameter im Schnitt MnSi-ReSi

Zusamm			
Re	Si	Mn	<i>u</i> (A)
50	50		4,771
45	50	5	4,759
40	50	10	4,752
35	50	15	4,740
30	50	20	4,711
20	50	30	4,668
15	50	35	4,656
5	50	45	4,582
0	50	50	4,557

2011

7,667 Å; c/a = 2,447. Es ist zu bemerken, daß in erster Linie die c-Achse kleiner wird, während die a-Achse schwach zunimmt.

Das Defekt-Disilicid des Mangans löst etwas Re-Silicid, wobei im Falle einer Legierung mit 3 At% Re und 64 At% Si eine Phase gemäß (Mn, Re)₁₅Si₂₆ wahrscheinlich gemacht wird. Das Auftreten der verschiedenen Defekt-Disilicide ist, wie bereits berichtet⁹, nicht nur von der Zusammensetzung, sondern auch von der Art der Herstellung und Wärmebehandlung abhängig¹⁹.

Die Zweistoffe: V-Si und V-Mn

Bezüglich des Zweistoffes V—Si sei auf die Angaben bei *Kieffer*, Benesovsky und Schmid²⁰ verwiesen. Neuere Daten über die Löslichkeit von Si in Vanadin stammen von Efimov²¹ einerseits und Bruning²² andrerseits. Bei 1000° C ist danach die Löslichkeit gering (etwa 1 At%).

Im V—Mn-System, das von $Waterstrat^{23}$ untersucht wurde, bestehen eine Ordnungsstruktur VMn²⁴ sowie eine σ -Phase²⁵.

Der Dreistoff: V-Mn-Si

Eine Untersuchung wurde wieder im Temperaturschnitt bei 1000° C durchgeführt, doch konnten nicht alle Bereiche bisher aufgeklärt werden. Der Si-arme Teil dieses Systems ist jedoch jenem des vorangegangenen Dreistoffs sehr ähnlich. So existiert wieder ein Feld der β -Mangan-Phase, das sich durch Aufnahme von relativ viel Silicium und von wenig des zweiten Übergangsmetalles auszeichnet. Ebenso ist das Feld des α -Mangans stark abgeschnürt.

Die V—Mn—Si- σ -Phase: Analog ist auch das Auftreten der σ -Phase Mn₃V, die durch Silicium in einem großen Homogenitätsgebiet stabilisiert wird und sich bei 10 At% Si von 60 bis 92 At% Mn erstreckt. Die Gitterparameter für einige Legierungen gehen aus Tab. 6 hervor. Man sieht, daß mit zunehmendem Si-Gehalt der *a*-Parameter merklich, der *c*-Parameter etwas weniger stark abnimmt; c/a steigt von Mn₃V (0,517) mit dem Si-Gehalt an.

Die V-Phase: Diese reicht, wie schon bekannt ist²³, bei Temperaturen von 900 bis 1000° C bis über 50 At% Mn. Dieser Befund konnte bestätigt werden, ebenso das Auftreten einer Ordnungsstruktur VMn (CsCl-Typ), die ohne Schwierigkeiten an den Überstrukturlinien, insbesondere am (210)-Reflex bei Chrom-Aufnahmen erkennbar ist.

¹⁹ Siehe auch G. Flieher, Dissertation, Univ. Wien, 1968.

²⁰ R. Kieffer, F. Benesovsky und H. Schmid, Z. Metallkde. 47, 247 (1956).

²¹ Yu. V. Efimov, J. Neorg. Khim. 8, 1522 (1963).

²² H. A. C. M. Bruning, Philips Res. Repts. 22, 349 (1967).

²³ R. M. Waterstrat, Trans. Met. Soc. AIME 224, 240 (1962).

²⁴ J. P. Darby, Trans. Met. Soc. AIME 227, 1460 (1963).

²⁵ H. P. Stuwe, Trans. Met. Soc. AIME **215**, 408 (1959).

Zusamm	ensetzung	in At%		_	- 1
V	Mn	Si	a	С	c/a
40	50	10	8,9555	4,6515	0,5190
30	60	10	8,9363	4,640	$0,519_{0}$
20	70	10	8,8960	$4,629_{2}$	0,520
10	80	10	$8,869_{2}$	$4,628_{4}$	0,522
10	75	15	$8,842_{5}$	$4,629_{0}$	0,523

Tabelle 6. Gitterparameter der V-Mn-Si-σ-Phase (in Å)

Ahnlich wie im System: Mn—Re—Si ist auch die R-Phase wieder zugunsten der N-Phase (v-Phase) beim Dreistoff: V—Mn—Si abgeschnürt. In unmittelbarer Nachbarschaft derselben tritt eine ternäre Kristallart auf, die keinen merklichen homogenen Bereich besitzt. Diese Verbindung weist strukturchemisch eine Ähnlichkeit mit der μ -Phase auf und dürfte wieder eine Polyeder-Phase sein. In V-reichen Proben tritt sie zusammen mit dem V₃Si-Mischkristall auf.

Der Schnitt: V₃Si---Mn₃Si. Die Kristallart V₃Si mit Cr₃Si-Typ besitzt --- wie manche der sogenannten β -Wolfram-Phasen bereits im binären System --- einen homogenen Bereich. So konnten die Angaben nach Efimov²¹ bestätigt werden, wonach die Vanadin-reiche Seite dieser Phase (V_{~4}Si) einen größeren Gitterparameter besitzt als V₃Si. Der Bereich von etwa 20-25 At% Si wurde kürzlich auch von Bruning²² beobachtet. Die V/Mn-Substitution erfolgt bis zu einem atomaren Verhältnis von etwa 1, scheint jedoch für höhere Metallgehalte geringer zu sein. Umgekehrt nimmt Mn₃Si wenig V₃Si auf (etwa 4 Mol%).

Der Schnitt: V₅Si₃(T1)—Mn₅Si₃(D8₈). Die V₅Si₃-Phase mit W₅Si₃-Typ löst Mangansilieid bis zu einem atomaren Verhältnis $Mn/V = 1/_3$, während die Mn₅Si₃-Phase bis zu einem Verhältnis V/Mn etwa 0,4 homogen ist. Die Gitterparameter der im Gleichgewicht stehenden Mischphasen sind:

a = 9,306 Å; c = 4,708 Å; $c/a = 0,505_9$ für (V_{0,68}Mn_{0,32})₅Si₃ mit W₅Si₃-Typ und a = 6,933 Å; c = 4,808 Å; $c/a = 0,693_4$

für (V_{0,36}Mn_{0,64})₅Si₃ mit D8₈-Typ.

In der Phase MnSi findet nur eine geringe Mn/V-Substitution statt. Im Bereich der Defektdisilicide des Mangans stellt man ebenfalls einen Mangan-Vanadin-Austausch fest; für eine homogene Legierung mit 2 At% V, 34 At% Mn und 64 At% Si sind die röntgenographischen Daten am besten mit einer Mischphase zu vereinbaren, die von Mn₂₆Si₄₅ ausgeht⁹. Die Substitution von Vanadin durch Mangan reicht in der Phase VSi₂ bis etwa ein Drittel. Die Gitterparameter für $V_{0.69}Mn_{0.31}Si_2$ sind:

 $a = 4,522; c = 6,363_7 \text{ Å}; c/a = 1,407.$

Abb. 2. Dreistoff Mn-Fe-Si. Schnitt bei 1000° C (in At%)

Der Dreistoff: Mn-Fe-Si

Der Zweistoff: Fe-Si ist bereits mehrfach untersucht worden; bezüglich der auftretenden Kristallarten sei auf die Zusammenstellung bei *Pearson*²⁶ verwiesen. Das gleiche ist vom Zweistoff Fe-Mn zu sagen, in dem die metastabile Phase mit hexagonal dichter Packung auftritt.

Ferner liegen im Dreistoff Mn—Fe—Si bereits Ergebnisse über das Mischungsverhalten von Mn₃Si—Fe₃Si²⁷; Mn₅Si₃—Fe₅Si₃²⁸; MnSi—FeSi²⁹

²⁶ W. B. Pearson, A. Handbook of Lattice Spacings and Structures of Metals and Alloys, Vol. 2, Pergamon Press, 1967.

²⁷ E. I. Gladyschevskii, P. J. Kripjakevic und Ju. B. Kuzma, Fiz. Metal. Metalloved 2, 454 (1956).

²⁸ B. Aronsson, Acta chem. Scand. 12, 308 (1958).

²⁹ A. Wittmann, K. O. Burger und H. Nowotny, Mh. Chem. 93, 674 (1962).

und MnSi_{2-x}—FeSi₂²⁹ vor. Außerdem haben *Sénateur* und *Fruchart*⁸ die Substitution von Mangan durch Eisen in Mn₅Si₂ studiert.

Die Untersuchung des Dreistoffes wurde ebenfalls für einen Schnitt bei 1000°C (abgeschreckt) durchgeführt (Abb. 2). Dabei konnte keine ternäre Kristallart beobachtet werden. Der Bereich der β -Manganphase erstreckt sich weit in den Dreistoff, was bereits von *Bardos* et al.³ festgestellt wurde. Bemerkenswert ist auch die ausgeprägte Löslichkeit von Silicium in der Mangan-reichen γ -Fe-Phase. Das Feld von α -Fe beschränkt sich bei 1000° C auf die Fe—Si-Seite, reicht aber bis 10—12 At% Mn. In der R-Phase wird Mangan durch etwa 5 At% Fe substituiert, während die v-Phase (N) im Dreistoff abgeschnürt wird.

Die lückenlose Mischreihe Fe₃Si—Mn₃Si wird bestätigt, doch zeigt sich gegenüber den Literaturangaben, daß bei 25 At% Si stets die geordnete Struktur (BiF₃-Typ) auftritt; die von *Gladyschevskii* et al. ²⁷ angegebenen Parameter ²⁶ sind daher zu verdoppeln. Interessant ist diese Mischphase insoferne, als von Mn₃Si bis Mn_{1,2}Fe_{1,8}Si kein Homogenitätsbereich bezüglich des Silicium-Gehaltes zu beobachten ist. Ein solcher tritt erst ab dieser Zusammensetzung bis zum binären Fe—Si-System auf.

Die schon bekannten Mischreihen Mn_5Si_3 —Fe₅Si₃ sowie MnSi—FeSi wurden ebenso bestätigt, wie die merkliche gegenseitige Löslichkeit des Disilicides bzw. des Defektdisilicides. Die Löslichkeit in den Mangandefektdisiliciden wirft allerdings wieder die Frage nach der besonderen Art der Metallsubstitution auf, die zweifelsfrei nur durch Einkristalluntersuchungen geklärt werden kann⁹. Der Mangan—Eisenaustausch verschiebt die Zusammensetzung in Richtung auf einen höheren Defekt¹⁹. Daß es sich in diesem Gebiete wieder um eine Pseudo-Mischphase handelt, ist bereits diskutiert worden.